123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856 |
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- // Copyright 2009 Google Inc. All Rights Reserved
- /**
- * Defines a Long class for representing a 64-bit two's-complement
- * integer value, which faithfully simulates the behavior of a Java "Long". This
- * implementation is derived from LongLib in GWT.
- *
- * Constructs a 64-bit two's-complement integer, given its low and high 32-bit
- * values as *signed* integers. See the from* functions below for more
- * convenient ways of constructing Longs.
- *
- * The internal representation of a Long is the two given signed, 32-bit values.
- * We use 32-bit pieces because these are the size of integers on which
- * Javascript performs bit-operations. For operations like addition and
- * multiplication, we split each number into 16-bit pieces, which can easily be
- * multiplied within Javascript's floating-point representation without overflow
- * or change in sign.
- *
- * In the algorithms below, we frequently reduce the negative case to the
- * positive case by negating the input(s) and then post-processing the result.
- * Note that we must ALWAYS check specially whether those values are MIN_VALUE
- * (-2^63) because -MIN_VALUE == MIN_VALUE (since 2^63 cannot be represented as
- * a positive number, it overflows back into a negative). Not handling this
- * case would often result in infinite recursion.
- *
- * @class
- * @param {number} low the low (signed) 32 bits of the Long.
- * @param {number} high the high (signed) 32 bits of the Long.
- * @return {Long}
- */
- function Long(low, high) {
- if(!(this instanceof Long)) return new Long(low, high);
-
- this._bsontype = 'Long';
- /**
- * @type {number}
- * @ignore
- */
- this.low_ = low | 0; // force into 32 signed bits.
- /**
- * @type {number}
- * @ignore
- */
- this.high_ = high | 0; // force into 32 signed bits.
- };
- /**
- * Return the int value.
- *
- * @method
- * @return {number} the value, assuming it is a 32-bit integer.
- */
- Long.prototype.toInt = function() {
- return this.low_;
- };
- /**
- * Return the Number value.
- *
- * @method
- * @return {number} the closest floating-point representation to this value.
- */
- Long.prototype.toNumber = function() {
- return this.high_ * Long.TWO_PWR_32_DBL_ +
- this.getLowBitsUnsigned();
- };
- /**
- * Return the JSON value.
- *
- * @method
- * @return {string} the JSON representation.
- */
- Long.prototype.toJSON = function() {
- return this.toString();
- }
- /**
- * Return the String value.
- *
- * @method
- * @param {number} [opt_radix] the radix in which the text should be written.
- * @return {string} the textual representation of this value.
- */
- Long.prototype.toString = function(opt_radix) {
- var radix = opt_radix || 10;
- if (radix < 2 || 36 < radix) {
- throw Error('radix out of range: ' + radix);
- }
- if (this.isZero()) {
- return '0';
- }
- if (this.isNegative()) {
- if (this.equals(Long.MIN_VALUE)) {
- // We need to change the Long value before it can be negated, so we remove
- // the bottom-most digit in this base and then recurse to do the rest.
- var radixLong = Long.fromNumber(radix);
- var div = this.div(radixLong);
- var rem = div.multiply(radixLong).subtract(this);
- return div.toString(radix) + rem.toInt().toString(radix);
- } else {
- return '-' + this.negate().toString(radix);
- }
- }
- // Do several (6) digits each time through the loop, so as to
- // minimize the calls to the very expensive emulated div.
- var radixToPower = Long.fromNumber(Math.pow(radix, 6));
- var rem = this;
- var result = '';
- while (true) {
- var remDiv = rem.div(radixToPower);
- var intval = rem.subtract(remDiv.multiply(radixToPower)).toInt();
- var digits = intval.toString(radix);
- rem = remDiv;
- if (rem.isZero()) {
- return digits + result;
- } else {
- while (digits.length < 6) {
- digits = '0' + digits;
- }
- result = '' + digits + result;
- }
- }
- };
- /**
- * Return the high 32-bits value.
- *
- * @method
- * @return {number} the high 32-bits as a signed value.
- */
- Long.prototype.getHighBits = function() {
- return this.high_;
- };
- /**
- * Return the low 32-bits value.
- *
- * @method
- * @return {number} the low 32-bits as a signed value.
- */
- Long.prototype.getLowBits = function() {
- return this.low_;
- };
- /**
- * Return the low unsigned 32-bits value.
- *
- * @method
- * @return {number} the low 32-bits as an unsigned value.
- */
- Long.prototype.getLowBitsUnsigned = function() {
- return (this.low_ >= 0) ?
- this.low_ : Long.TWO_PWR_32_DBL_ + this.low_;
- };
- /**
- * Returns the number of bits needed to represent the absolute value of this Long.
- *
- * @method
- * @return {number} Returns the number of bits needed to represent the absolute value of this Long.
- */
- Long.prototype.getNumBitsAbs = function() {
- if (this.isNegative()) {
- if (this.equals(Long.MIN_VALUE)) {
- return 64;
- } else {
- return this.negate().getNumBitsAbs();
- }
- } else {
- var val = this.high_ != 0 ? this.high_ : this.low_;
- for (var bit = 31; bit > 0; bit--) {
- if ((val & (1 << bit)) != 0) {
- break;
- }
- }
- return this.high_ != 0 ? bit + 33 : bit + 1;
- }
- };
- /**
- * Return whether this value is zero.
- *
- * @method
- * @return {boolean} whether this value is zero.
- */
- Long.prototype.isZero = function() {
- return this.high_ == 0 && this.low_ == 0;
- };
- /**
- * Return whether this value is negative.
- *
- * @method
- * @return {boolean} whether this value is negative.
- */
- Long.prototype.isNegative = function() {
- return this.high_ < 0;
- };
- /**
- * Return whether this value is odd.
- *
- * @method
- * @return {boolean} whether this value is odd.
- */
- Long.prototype.isOdd = function() {
- return (this.low_ & 1) == 1;
- };
- /**
- * Return whether this Long equals the other
- *
- * @method
- * @param {Long} other Long to compare against.
- * @return {boolean} whether this Long equals the other
- */
- Long.prototype.equals = function(other) {
- return (this.high_ == other.high_) && (this.low_ == other.low_);
- };
- /**
- * Return whether this Long does not equal the other.
- *
- * @method
- * @param {Long} other Long to compare against.
- * @return {boolean} whether this Long does not equal the other.
- */
- Long.prototype.notEquals = function(other) {
- return (this.high_ != other.high_) || (this.low_ != other.low_);
- };
- /**
- * Return whether this Long is less than the other.
- *
- * @method
- * @param {Long} other Long to compare against.
- * @return {boolean} whether this Long is less than the other.
- */
- Long.prototype.lessThan = function(other) {
- return this.compare(other) < 0;
- };
- /**
- * Return whether this Long is less than or equal to the other.
- *
- * @method
- * @param {Long} other Long to compare against.
- * @return {boolean} whether this Long is less than or equal to the other.
- */
- Long.prototype.lessThanOrEqual = function(other) {
- return this.compare(other) <= 0;
- };
- /**
- * Return whether this Long is greater than the other.
- *
- * @method
- * @param {Long} other Long to compare against.
- * @return {boolean} whether this Long is greater than the other.
- */
- Long.prototype.greaterThan = function(other) {
- return this.compare(other) > 0;
- };
- /**
- * Return whether this Long is greater than or equal to the other.
- *
- * @method
- * @param {Long} other Long to compare against.
- * @return {boolean} whether this Long is greater than or equal to the other.
- */
- Long.prototype.greaterThanOrEqual = function(other) {
- return this.compare(other) >= 0;
- };
- /**
- * Compares this Long with the given one.
- *
- * @method
- * @param {Long} other Long to compare against.
- * @return {boolean} 0 if they are the same, 1 if the this is greater, and -1 if the given one is greater.
- */
- Long.prototype.compare = function(other) {
- if (this.equals(other)) {
- return 0;
- }
- var thisNeg = this.isNegative();
- var otherNeg = other.isNegative();
- if (thisNeg && !otherNeg) {
- return -1;
- }
- if (!thisNeg && otherNeg) {
- return 1;
- }
- // at this point, the signs are the same, so subtraction will not overflow
- if (this.subtract(other).isNegative()) {
- return -1;
- } else {
- return 1;
- }
- };
- /**
- * The negation of this value.
- *
- * @method
- * @return {Long} the negation of this value.
- */
- Long.prototype.negate = function() {
- if (this.equals(Long.MIN_VALUE)) {
- return Long.MIN_VALUE;
- } else {
- return this.not().add(Long.ONE);
- }
- };
- /**
- * Returns the sum of this and the given Long.
- *
- * @method
- * @param {Long} other Long to add to this one.
- * @return {Long} the sum of this and the given Long.
- */
- Long.prototype.add = function(other) {
- // Divide each number into 4 chunks of 16 bits, and then sum the chunks.
- var a48 = this.high_ >>> 16;
- var a32 = this.high_ & 0xFFFF;
- var a16 = this.low_ >>> 16;
- var a00 = this.low_ & 0xFFFF;
- var b48 = other.high_ >>> 16;
- var b32 = other.high_ & 0xFFFF;
- var b16 = other.low_ >>> 16;
- var b00 = other.low_ & 0xFFFF;
- var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
- c00 += a00 + b00;
- c16 += c00 >>> 16;
- c00 &= 0xFFFF;
- c16 += a16 + b16;
- c32 += c16 >>> 16;
- c16 &= 0xFFFF;
- c32 += a32 + b32;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c48 += a48 + b48;
- c48 &= 0xFFFF;
- return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
- };
- /**
- * Returns the difference of this and the given Long.
- *
- * @method
- * @param {Long} other Long to subtract from this.
- * @return {Long} the difference of this and the given Long.
- */
- Long.prototype.subtract = function(other) {
- return this.add(other.negate());
- };
- /**
- * Returns the product of this and the given Long.
- *
- * @method
- * @param {Long} other Long to multiply with this.
- * @return {Long} the product of this and the other.
- */
- Long.prototype.multiply = function(other) {
- if (this.isZero()) {
- return Long.ZERO;
- } else if (other.isZero()) {
- return Long.ZERO;
- }
- if (this.equals(Long.MIN_VALUE)) {
- return other.isOdd() ? Long.MIN_VALUE : Long.ZERO;
- } else if (other.equals(Long.MIN_VALUE)) {
- return this.isOdd() ? Long.MIN_VALUE : Long.ZERO;
- }
- if (this.isNegative()) {
- if (other.isNegative()) {
- return this.negate().multiply(other.negate());
- } else {
- return this.negate().multiply(other).negate();
- }
- } else if (other.isNegative()) {
- return this.multiply(other.negate()).negate();
- }
- // If both Longs are small, use float multiplication
- if (this.lessThan(Long.TWO_PWR_24_) &&
- other.lessThan(Long.TWO_PWR_24_)) {
- return Long.fromNumber(this.toNumber() * other.toNumber());
- }
- // Divide each Long into 4 chunks of 16 bits, and then add up 4x4 products.
- // We can skip products that would overflow.
- var a48 = this.high_ >>> 16;
- var a32 = this.high_ & 0xFFFF;
- var a16 = this.low_ >>> 16;
- var a00 = this.low_ & 0xFFFF;
- var b48 = other.high_ >>> 16;
- var b32 = other.high_ & 0xFFFF;
- var b16 = other.low_ >>> 16;
- var b00 = other.low_ & 0xFFFF;
- var c48 = 0, c32 = 0, c16 = 0, c00 = 0;
- c00 += a00 * b00;
- c16 += c00 >>> 16;
- c00 &= 0xFFFF;
- c16 += a16 * b00;
- c32 += c16 >>> 16;
- c16 &= 0xFFFF;
- c16 += a00 * b16;
- c32 += c16 >>> 16;
- c16 &= 0xFFFF;
- c32 += a32 * b00;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c32 += a16 * b16;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c32 += a00 * b32;
- c48 += c32 >>> 16;
- c32 &= 0xFFFF;
- c48 += a48 * b00 + a32 * b16 + a16 * b32 + a00 * b48;
- c48 &= 0xFFFF;
- return Long.fromBits((c16 << 16) | c00, (c48 << 16) | c32);
- };
- /**
- * Returns this Long divided by the given one.
- *
- * @method
- * @param {Long} other Long by which to divide.
- * @return {Long} this Long divided by the given one.
- */
- Long.prototype.div = function(other) {
- if (other.isZero()) {
- throw Error('division by zero');
- } else if (this.isZero()) {
- return Long.ZERO;
- }
- if (this.equals(Long.MIN_VALUE)) {
- if (other.equals(Long.ONE) ||
- other.equals(Long.NEG_ONE)) {
- return Long.MIN_VALUE; // recall that -MIN_VALUE == MIN_VALUE
- } else if (other.equals(Long.MIN_VALUE)) {
- return Long.ONE;
- } else {
- // At this point, we have |other| >= 2, so |this/other| < |MIN_VALUE|.
- var halfThis = this.shiftRight(1);
- var approx = halfThis.div(other).shiftLeft(1);
- if (approx.equals(Long.ZERO)) {
- return other.isNegative() ? Long.ONE : Long.NEG_ONE;
- } else {
- var rem = this.subtract(other.multiply(approx));
- var result = approx.add(rem.div(other));
- return result;
- }
- }
- } else if (other.equals(Long.MIN_VALUE)) {
- return Long.ZERO;
- }
- if (this.isNegative()) {
- if (other.isNegative()) {
- return this.negate().div(other.negate());
- } else {
- return this.negate().div(other).negate();
- }
- } else if (other.isNegative()) {
- return this.div(other.negate()).negate();
- }
- // Repeat the following until the remainder is less than other: find a
- // floating-point that approximates remainder / other *from below*, add this
- // into the result, and subtract it from the remainder. It is critical that
- // the approximate value is less than or equal to the real value so that the
- // remainder never becomes negative.
- var res = Long.ZERO;
- var rem = this;
- while (rem.greaterThanOrEqual(other)) {
- // Approximate the result of division. This may be a little greater or
- // smaller than the actual value.
- var approx = Math.max(1, Math.floor(rem.toNumber() / other.toNumber()));
- // We will tweak the approximate result by changing it in the 48-th digit or
- // the smallest non-fractional digit, whichever is larger.
- var log2 = Math.ceil(Math.log(approx) / Math.LN2);
- var delta = (log2 <= 48) ? 1 : Math.pow(2, log2 - 48);
- // Decrease the approximation until it is smaller than the remainder. Note
- // that if it is too large, the product overflows and is negative.
- var approxRes = Long.fromNumber(approx);
- var approxRem = approxRes.multiply(other);
- while (approxRem.isNegative() || approxRem.greaterThan(rem)) {
- approx -= delta;
- approxRes = Long.fromNumber(approx);
- approxRem = approxRes.multiply(other);
- }
- // We know the answer can't be zero... and actually, zero would cause
- // infinite recursion since we would make no progress.
- if (approxRes.isZero()) {
- approxRes = Long.ONE;
- }
- res = res.add(approxRes);
- rem = rem.subtract(approxRem);
- }
- return res;
- };
- /**
- * Returns this Long modulo the given one.
- *
- * @method
- * @param {Long} other Long by which to mod.
- * @return {Long} this Long modulo the given one.
- */
- Long.prototype.modulo = function(other) {
- return this.subtract(this.div(other).multiply(other));
- };
- /**
- * The bitwise-NOT of this value.
- *
- * @method
- * @return {Long} the bitwise-NOT of this value.
- */
- Long.prototype.not = function() {
- return Long.fromBits(~this.low_, ~this.high_);
- };
- /**
- * Returns the bitwise-AND of this Long and the given one.
- *
- * @method
- * @param {Long} other the Long with which to AND.
- * @return {Long} the bitwise-AND of this and the other.
- */
- Long.prototype.and = function(other) {
- return Long.fromBits(this.low_ & other.low_, this.high_ & other.high_);
- };
- /**
- * Returns the bitwise-OR of this Long and the given one.
- *
- * @method
- * @param {Long} other the Long with which to OR.
- * @return {Long} the bitwise-OR of this and the other.
- */
- Long.prototype.or = function(other) {
- return Long.fromBits(this.low_ | other.low_, this.high_ | other.high_);
- };
- /**
- * Returns the bitwise-XOR of this Long and the given one.
- *
- * @method
- * @param {Long} other the Long with which to XOR.
- * @return {Long} the bitwise-XOR of this and the other.
- */
- Long.prototype.xor = function(other) {
- return Long.fromBits(this.low_ ^ other.low_, this.high_ ^ other.high_);
- };
- /**
- * Returns this Long with bits shifted to the left by the given amount.
- *
- * @method
- * @param {number} numBits the number of bits by which to shift.
- * @return {Long} this shifted to the left by the given amount.
- */
- Long.prototype.shiftLeft = function(numBits) {
- numBits &= 63;
- if (numBits == 0) {
- return this;
- } else {
- var low = this.low_;
- if (numBits < 32) {
- var high = this.high_;
- return Long.fromBits(
- low << numBits,
- (high << numBits) | (low >>> (32 - numBits)));
- } else {
- return Long.fromBits(0, low << (numBits - 32));
- }
- }
- };
- /**
- * Returns this Long with bits shifted to the right by the given amount.
- *
- * @method
- * @param {number} numBits the number of bits by which to shift.
- * @return {Long} this shifted to the right by the given amount.
- */
- Long.prototype.shiftRight = function(numBits) {
- numBits &= 63;
- if (numBits == 0) {
- return this;
- } else {
- var high = this.high_;
- if (numBits < 32) {
- var low = this.low_;
- return Long.fromBits(
- (low >>> numBits) | (high << (32 - numBits)),
- high >> numBits);
- } else {
- return Long.fromBits(
- high >> (numBits - 32),
- high >= 0 ? 0 : -1);
- }
- }
- };
- /**
- * Returns this Long with bits shifted to the right by the given amount, with the new top bits matching the current sign bit.
- *
- * @method
- * @param {number} numBits the number of bits by which to shift.
- * @return {Long} this shifted to the right by the given amount, with zeros placed into the new leading bits.
- */
- Long.prototype.shiftRightUnsigned = function(numBits) {
- numBits &= 63;
- if (numBits == 0) {
- return this;
- } else {
- var high = this.high_;
- if (numBits < 32) {
- var low = this.low_;
- return Long.fromBits(
- (low >>> numBits) | (high << (32 - numBits)),
- high >>> numBits);
- } else if (numBits == 32) {
- return Long.fromBits(high, 0);
- } else {
- return Long.fromBits(high >>> (numBits - 32), 0);
- }
- }
- };
- /**
- * Returns a Long representing the given (32-bit) integer value.
- *
- * @method
- * @param {number} value the 32-bit integer in question.
- * @return {Long} the corresponding Long value.
- */
- Long.fromInt = function(value) {
- if (-128 <= value && value < 128) {
- var cachedObj = Long.INT_CACHE_[value];
- if (cachedObj) {
- return cachedObj;
- }
- }
- var obj = new Long(value | 0, value < 0 ? -1 : 0);
- if (-128 <= value && value < 128) {
- Long.INT_CACHE_[value] = obj;
- }
- return obj;
- };
- /**
- * Returns a Long representing the given value, provided that it is a finite number. Otherwise, zero is returned.
- *
- * @method
- * @param {number} value the number in question.
- * @return {Long} the corresponding Long value.
- */
- Long.fromNumber = function(value) {
- if (isNaN(value) || !isFinite(value)) {
- return Long.ZERO;
- } else if (value <= -Long.TWO_PWR_63_DBL_) {
- return Long.MIN_VALUE;
- } else if (value + 1 >= Long.TWO_PWR_63_DBL_) {
- return Long.MAX_VALUE;
- } else if (value < 0) {
- return Long.fromNumber(-value).negate();
- } else {
- return new Long(
- (value % Long.TWO_PWR_32_DBL_) | 0,
- (value / Long.TWO_PWR_32_DBL_) | 0);
- }
- };
- /**
- * Returns a Long representing the 64-bit integer that comes by concatenating the given high and low bits. Each is assumed to use 32 bits.
- *
- * @method
- * @param {number} lowBits the low 32-bits.
- * @param {number} highBits the high 32-bits.
- * @return {Long} the corresponding Long value.
- */
- Long.fromBits = function(lowBits, highBits) {
- return new Long(lowBits, highBits);
- };
- /**
- * Returns a Long representation of the given string, written using the given radix.
- *
- * @method
- * @param {string} str the textual representation of the Long.
- * @param {number} opt_radix the radix in which the text is written.
- * @return {Long} the corresponding Long value.
- */
- Long.fromString = function(str, opt_radix) {
- if (str.length == 0) {
- throw Error('number format error: empty string');
- }
- var radix = opt_radix || 10;
- if (radix < 2 || 36 < radix) {
- throw Error('radix out of range: ' + radix);
- }
- if (str.charAt(0) == '-') {
- return Long.fromString(str.substring(1), radix).negate();
- } else if (str.indexOf('-') >= 0) {
- throw Error('number format error: interior "-" character: ' + str);
- }
- // Do several (8) digits each time through the loop, so as to
- // minimize the calls to the very expensive emulated div.
- var radixToPower = Long.fromNumber(Math.pow(radix, 8));
- var result = Long.ZERO;
- for (var i = 0; i < str.length; i += 8) {
- var size = Math.min(8, str.length - i);
- var value = parseInt(str.substring(i, i + size), radix);
- if (size < 8) {
- var power = Long.fromNumber(Math.pow(radix, size));
- result = result.multiply(power).add(Long.fromNumber(value));
- } else {
- result = result.multiply(radixToPower);
- result = result.add(Long.fromNumber(value));
- }
- }
- return result;
- };
- // NOTE: Common constant values ZERO, ONE, NEG_ONE, etc. are defined below the
- // from* methods on which they depend.
- /**
- * A cache of the Long representations of small integer values.
- * @type {Object}
- * @ignore
- */
- Long.INT_CACHE_ = {};
- // NOTE: the compiler should inline these constant values below and then remove
- // these variables, so there should be no runtime penalty for these.
- /**
- * Number used repeated below in calculations. This must appear before the
- * first call to any from* function below.
- * @type {number}
- * @ignore
- */
- Long.TWO_PWR_16_DBL_ = 1 << 16;
- /**
- * @type {number}
- * @ignore
- */
- Long.TWO_PWR_24_DBL_ = 1 << 24;
- /**
- * @type {number}
- * @ignore
- */
- Long.TWO_PWR_32_DBL_ = Long.TWO_PWR_16_DBL_ * Long.TWO_PWR_16_DBL_;
- /**
- * @type {number}
- * @ignore
- */
- Long.TWO_PWR_31_DBL_ = Long.TWO_PWR_32_DBL_ / 2;
- /**
- * @type {number}
- * @ignore
- */
- Long.TWO_PWR_48_DBL_ = Long.TWO_PWR_32_DBL_ * Long.TWO_PWR_16_DBL_;
- /**
- * @type {number}
- * @ignore
- */
- Long.TWO_PWR_64_DBL_ = Long.TWO_PWR_32_DBL_ * Long.TWO_PWR_32_DBL_;
- /**
- * @type {number}
- * @ignore
- */
- Long.TWO_PWR_63_DBL_ = Long.TWO_PWR_64_DBL_ / 2;
- /** @type {Long} */
- Long.ZERO = Long.fromInt(0);
- /** @type {Long} */
- Long.ONE = Long.fromInt(1);
- /** @type {Long} */
- Long.NEG_ONE = Long.fromInt(-1);
- /** @type {Long} */
- Long.MAX_VALUE =
- Long.fromBits(0xFFFFFFFF | 0, 0x7FFFFFFF | 0);
- /** @type {Long} */
- Long.MIN_VALUE = Long.fromBits(0, 0x80000000 | 0);
- /**
- * @type {Long}
- * @ignore
- */
- Long.TWO_PWR_24_ = Long.fromInt(1 << 24);
- /**
- * Expose.
- */
- module.exports = Long;
- module.exports.Long = Long;
|